注意
想法及时记录,实现可以待做。
简介
线程池解决了两个不同的问题:由于减少了每个任务的调用开销,它们通常在执行大量异步任务时提供更好的性能。
并且它们提供了一种约束和管理资源的方法,包括线程在执行任务集合时消耗的资源。每个任务还维护一些基本的统计数据,如已完成的任务数量。
使用线程池的好处有:
- 可管理:线程属于稀缺资源,不能无限制创建,否则会造成系统的稳定性。使用线程池可以进行统一的分配、调优和监控。
- 性能提升:创建线程是个很大的开销,能复用线程对于性能的提升有帮助。
ThreadPoolExecutor的UML类图如图所示:
组成介绍
// 状态控制的变量,32位的原子变量
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
// 数量的位数,32-3=29位,也即最大就是 2^29 -1 个
private static final int COUNT_BITS = Integer.SIZE - 3;
// 最大数量 2^29 -1
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// 线程池运行状态,是由int的高位存储的,高3位表示。通过移位运算得到值的大小。
// 整个状态值的大小顺序主: RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED
// runState is stored in the high-order bits
// 高位 111 ... -1的二进制表示,32个1,带符号位左移29位后,就剩下高位的3个1。该状态表示线程池会接受新的任务,并处理阻塞队列的任务。
private static final int RUNNING = -1 << COUNT_BITS;
// 高位 000 ... 该状态表示 不会接受新的任务,但是还会继续处理阻塞队列中的任务
private static final int SHUTDOWN = 0 << COUNT_BITS;
// 高位 001 ... 该状态表示 不会接受新的任务,也不会处理组赛队列的任务,而且还会中断正在运行中的任务
private static final int STOP = 1 << COUNT_BITS;
// 高位 010 ... 该状态表示 所有任务都已经终止
private static final int TIDYING = 2 << COUNT_BITS;
// 高位 011 ... 改装套表示 terminated方法执行完成
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
// 状态值取高3位
private static int runStateOf(int c) { return c & ~CAPACITY; }
// 数量取后29位
private static int workerCountOf(int c) { return c & CAPACITY; }
// 位 或运算,将状态值和数量组成 ctl状态控制量
private static int ctlOf(int rs, int wc) { return rs | wc; }
// 工作任务队列
private final BlockingQueue<Runnable> workQueue;
// 工作线程集合
private final HashSet<Worker> workers = new HashSet<Worker>();
// 完成的任务数
private long completedTaskCount;
// 线程工厂
private volatile ThreadFactory threadFactory;
// 拒绝策略
private volatile RejectedExecutionHandler handler;
/**
* 空闲线程存活时间
* Timeout in nanoseconds for idle threads waiting for work.
* Threads use this timeout when there are more than corePoolSize
* present or if allowCoreThreadTimeOut. Otherwise they wait
* forever for new work.
*/
private volatile long keepAliveTime;
/**
* 核心线程数
* Core pool size is the minimum number of workers to keep alive
* (and not allow to time out etc) unless allowCoreThreadTimeOut
* is set, in which case the minimum is zero.
*/
private volatile int corePoolSize;
/**
* 最大线程数
* Maximum pool size. Note that the actual maximum is internally
* bounded by CAPACITY.
*/
private volatile int maximumPoolSize;
关键内部类
/**
* Class Worker mainly maintains interrupt control state for
* threads running tasks, along with other minor bookkeeping.
* This class opportunistically extends AbstractQueuedSynchronizer
* to simplify acquiring and releasing a lock surrounding each
* task execution. This protects against interrupts that are
* intended to wake up a worker thread waiting for a task from
* instead interrupting a task being run. We implement a simple
* non-reentrant mutual exclusion lock rather than use
* ReentrantLock because we do not want worker tasks to be able to
* reacquire the lock when they invoke pool control methods like
* setCorePoolSize. Additionally, to suppress interrupts until
* the thread actually starts running tasks, we initialize lock
* state to a negative value, and clear it upon start (in
* runWorker).
*/
private final class Worker
extends AbstractQueuedSynchronizer
implements Runnable
{
/**
* This class will never be serialized, but we provide a
* serialVersionUID to suppress a javac warning.
*/
private static final long serialVersionUID = 6138294804551838833L;
// worker持有的线程,只有线程工厂运行失败的时候,才会为null
/** Thread this worker is running in. Null if factory fails. */
final Thread thread;
// 初始化任务,不为空的时候,任务直接运行,不需要添加到队列中
/** Initial task to run. Possibly null. */
Runnable firstTask;
// 完成的任务数
/** Per-thread task counter */
volatile long completedTasks;
/**
* 构造工作worker
* Creates with given first task and thread from ThreadFactory.
* @param firstTask the first task (null if none)
*/
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this);
}
/** Delegates main run loop to outer runWorker */
public void run() {
// 当这个worker执行的时候,这个方法便会执行,里面是一直在循环取任务执行任务
runWorker(this);
}
}
提交任务
/**
* 执行任务,要么是新的线程,要么是池化的线程
* 如果当前线程数小于核心线程,那么执行任务就会直接新开线程执行
* 如果任务加入队列成功,就检查是否要新开线程
* 如果任务加入队列失败,就有可能是线程池关闭或者队列满了,所以执行拒绝策略
* Executes the given task sometime in the future. The task
* may execute in a new thread or in an existing pooled thread.
*
* If the task cannot be submitted for execution, either because this
* executor has been shutdown or because its capacity has been reached,
* the task is handled by the current {@code RejectedExecutionHandler}.
*
* @param command the task to execute
* @throws RejectedExecutionException at discretion of
* {@code RejectedExecutionHandler}, if the task
* cannot be accepted for execution
* @throws NullPointerException if {@code command} is null
*/
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
// 获取状态控制量,可以得到运行状态和线程数
int c = ctl.get();
// 如果当前线程数小于核心数
if (workerCountOf(c) < corePoolSize) {
// 增加核心工作线程成功,本次执行完成
if (addWorker(command, true))
return;
// 增加失败,再次获取状态控制量
c = ctl.get();
}
// 核心线程数满了,那么如果线程池的状态在「运行中」并且加入到队列中
if (isRunning(c) && workQueue.offer(command)) {
// 再次检查状态量,如果线程池状态不在「运行中」,并且删除任务成功,则执行拒绝策略
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
// 如果线程数为0,则增加非核心工作线程
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// 队列也满了,那么就尝试增加非核心工作线程,会校验最大线程数,如果添加失败,则拒绝策略
else if (!addWorker(command, false))
reject(command);
}
添加任务
/**
* Checks if a new worker can be added with respect to current
* pool state and the given bound (either core or maximum). If so,
* the worker count is adjusted accordingly, and, if possible, a
* new worker is created and started, running firstTask as its
* first task. This method returns false if the pool is stopped or
* eligible to shut down. It also returns false if the thread
* factory fails to create a thread when asked. If the thread
* creation fails, either due to the thread factory returning
* null, or due to an exception (typically OutOfMemoryError in
* Thread.start()), we roll back cleanly.
*
* @param firstTask the task the new thread should run first (or
* null if none). Workers are created with an initial first task
* (in method execute()) to bypass queuing when there are fewer
* than corePoolSize threads (in which case we always start one),
* or when the queue is full (in which case we must bypass queue).
* Initially idle threads are usually created via
* prestartCoreThread or to replace other dying workers.
*
* @param core if true use corePoolSize as bound, else
* maximumPoolSize. (A boolean indicator is used here rather than a
* value to ensure reads of fresh values after checking other pool
* state).
* @return true if successful
*/
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// 已经shutdown, firstTask 为空的添加并不会成功
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
// 工作线程数超过最大值,或者超过设置的值,都不能再次新增,返回失败
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
// cas自旋增加工作线程数,成功就跳出本次循环,进入下面的逻辑
if (compareAndIncrementWorkerCount(c))
break retry;
// 重读状态量,前后不一致说明有变化,需要重新循环一次
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
// 构造新的worker
w = new Worker(firstTask);
final Thread t = w.thread;
// worker的绑定线程不为null,只有线程工厂创建失败的时候,才会为null
if (t != null) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
// 线程池状态为「运行中」或者 「SHUTDOWN」但还是会处理剩下的待处理任务,也就是不会是初始化的firstTask,即firstTask为null
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
// 如果worker的绑定线程已经启动了,则状态异常
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
// 添加进线程集合中
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
// 已经将worker添加进线程集合中,那么可以启动线程执行任务了
if (workerAdded) {
// 启动线程,实际上去执行 Worker.run() 方法,最终执行的是Worker.runWorker,这才是重点。
t.start();
workerStarted = true;
}
}
} finally {
// worker如果没有启动成功,则添加失败,清除相关的数据
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
执行任务
这个是主要的执行队列任务的方法,他会一直循环获取队列里面的worker,然后执行。
/**
* Main worker run loop. Repeatedly gets tasks from queue and
* executes them, while coping with a number of issues:
*
* 1. We may start out with an initial task, in which case we
* don't need to get the first one. Otherwise, as long as pool is
* running, we get tasks from getTask. If it returns null then the
* worker exits due to changed pool state or configuration
* parameters. Other exits result from exception throws in
* external code, in which case completedAbruptly holds, which
* usually leads processWorkerExit to replace this thread.
*
* 2. Before running any task, the lock is acquired to prevent
* other pool interrupts while the task is executing, and then we
* ensure that unless pool is stopping, this thread does not have
* its interrupt set.
*
* 3. Each task run is preceded by a call to beforeExecute, which
* might throw an exception, in which case we cause thread to die
* (breaking loop with completedAbruptly true) without processing
* the task.
*
* 4. Assuming beforeExecute completes normally, we run the task,
* gathering any of its thrown exceptions to send to afterExecute.
* We separately handle RuntimeException, Error (both of which the
* specs guarantee that we trap) and arbitrary Throwables.
* Because we cannot rethrow Throwables within Runnable.run, we
* wrap them within Errors on the way out (to the thread's
* UncaughtExceptionHandler). Any thrown exception also
* conservatively causes thread to die.
*
* 5. After task.run completes, we call afterExecute, which may
* also throw an exception, which will also cause thread to
* die. According to JLS Sec 14.20, this exception is the one that
* will be in effect even if task.run throws.
*
* The net effect of the exception mechanics is that afterExecute
* and the thread's UncaughtExceptionHandler have as accurate
* information as we can provide about any problems encountered by
* user code.
*
* @param w the worker
*/
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
// 这就是线程池的每个线程都会一直循环从阻塞队列获取任务,
// 初始化的时候,firstTask不为null,待核心线程数满了,就进入队列,一直从队列获取
while (task != null || (task = getTask()) != null) {
w.lock();
// 检测是否已被线程池是否停止 或者当前 worker 被中断
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
// 执行线程的中断
wt.interrupt();
try {
// 任务执行前的回调方法
beforeExecute(wt, task);
Throwable thrown = null;
try {
// 注意看,这里是run而不是start,说明就用的这个线程本身执行,而不是另起新的线程,很重要,这就是线程复用的原因。
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
// 任务执行后的回调方法
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
// 任务执行退出清理操作
processWorkerExit(w, completedAbruptly);
}
}
从队列获取任务
/**
* Performs blocking or timed wait for a task, depending on
* current configuration settings, or returns null if this worker
* must exit because of any of:
* 1. There are more than maximumPoolSize workers (due to
* a call to setMaximumPoolSize).
* 2. The pool is stopped.
* 3. The pool is shutdown and the queue is empty.
* 4. This worker timed out waiting for a task, and timed-out
* workers are subject to termination (that is,
* {@code allowCoreThreadTimeOut || workerCount > corePoolSize})
* both before and after the timed wait, and if the queue is
* non-empty, this worker is not the last thread in the pool.
*
* @return task, or null if the worker must exit, in which case
* workerCount is decremented
*/
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// 如果进行了 shutdown, 且队列为空, 则需要将 worker 退出
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
// 线程数据大于最大允许线程,有超时机制的,需要删除多余的 Worker
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
// 带超时的获取,或者是阻塞的获取任务
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
停止线程池
/**
* Initiates an orderly shutdown in which previously submitted
* tasks are executed, but no new tasks will be accepted.
* Invocation has no additional effect if already shut down.
*
* <p>This method does not wait for previously submitted tasks to
* complete execution. Use {@link #awaitTermination awaitTermination}
* to do that.
*
* @throws SecurityException {@inheritDoc}
*/
public void shutdown() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// 检查权限
checkShutdownAccess();
// 设置运行状态为 SHUTDOWN
advanceRunState(SHUTDOWN);
// 中断线程
interruptIdleWorkers();
onShutdown(); // hook for ScheduledThreadPoolExecutor
} finally {
mainLock.unlock();
}
// 没有强制设置状态,而是如果还有待执行的任务,继续执行,如果没有待执行的任务,就设置 TERMINATED 状态
tryTerminate();
}
/**
* Attempts to stop all actively executing tasks, halts the
* processing of waiting tasks, and returns a list of the tasks
* that were awaiting execution. These tasks are drained (removed)
* from the task queue upon return from this method.
*
* <p>This method does not wait for actively executing tasks to
* terminate. Use {@link #awaitTermination awaitTermination} to
* do that.
*
* <p>There are no guarantees beyond best-effort attempts to stop
* processing actively executing tasks. This implementation
* cancels tasks via {@link Thread#interrupt}, so any task that
* fails to respond to interrupts may never terminate.
*
* @throws SecurityException {@inheritDoc}
*/
public List<Runnable> shutdownNow() {
List<Runnable> tasks;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
// 设置运行状态为 STOP
advanceRunState(STOP);
interruptWorkers();
// 注意:这里与shutdown的区别,它会清空队列,待处理任务都没法继续执行
tasks = drainQueue();
} finally {
mainLock.unlock();
}
tryTerminate();
return tasks;
}
参考
- 并发系列(6)之 ThreadPoolExecutor 详解
- JUC线程池: ThreadPoolExecutor详解
- 线程池技术之:ThreadPoolExecutor 源码解析
- Java线程池实现原理及其在美团业务中的实践